

Frame Rate Exclusive Sync Management of Live Video

Streams in Collaborative Mobile Production Environment
Mudassar Ahmad Mughal

Mobile Life @ Stockholm University
Box 1197, SE-16426 Kista-Sweden

mamughal@dsv.su.se

Goranka Zoric
Mobile Life @ Stockholm University
Box 1197, SE-16426 Kista-Sweden

goga@mobilelifecentre.org

 Oskar Juhlin
Mobile Life @ Stockholm University
Box 1197, SE-16426 Kista-Sweden

oskarj@dsv.su.se

ABSTRACT

We discuss synchronization problem in an emerging type of mul-

timedia applications, called live mobile collaborative video pro-

duction systems. The mobile character of the production system

allows a director to be present at the site where he/she can see the

event directly as well as through the mixer display. In such a situ-

ation production of a consistent broadcast is sensitive to delay and

asynchrony of video streams in the mixer console. In this paper,

we propose an algorithm for this situation called “frame rate ex-

clusive sync manager”, which draws on existing reactive source

control synchronization techniques. It relies solely on frame-rate

control and maintains synchronization between live video streams

while ensuring minimal delay by dynamically adapting the frame-

rate of the camera feeds based on synchronization offset and net-

work bandwidth health. The algorithm is evaluated by simulation

which indicates algorithm’s capability of achieving increased

synchronization among live streams.

Categories and Subject Descriptors

H.5.1 [Information interfaces and presentation]: Multimedia

Information Systems –video

General Terms

Algorithms, Measurement, Performance, Experimentation

Keywords

Synchronization, production, video, mobility, live broadcast,

streaming, collaborative, frame rate adjustment, network delay.

1. INTRODUCTION
We conduct design oriented research [31] in the area of mobile

video services and applications. Traditionally, this type of re-

search approach combines studies of user experiences in combina-

tion with an understanding of emergent technical research, to

generate interesting and meaningful prototype applications. The

research prototypes built are developed only to influence the un-

derstanding of the pros and cons of the applications suggested,

and to further develop understanding of user experiences.

This method has been used to produce two different collaborative

live video mixers [8, 9, 10, 11] which allow users to produce vid-

eos collaboratively using multiple mobile cameras, in a manner

similar to how professional live TV production teams work, and

stream the resultant video live for a (public) viewing. Such system

consists of mobile cameras capable of live streaming via 3G/4G

mobile networks, a mixer console and a webpage displaying a

final video output. Mobile cameras stream live video of the event

being filmed to the mixer console. The mixer console receives live

video streams from all the mobile cameras and shows them simul-

taneously on the screen, enabling the director (a user controlling

the mixer console) to “multi-view” all available content. The task

is then to decide, on a moment-by-moment basis, which camera to

select for the live broadcast. Based on the director’s selection, the

final video output is made available on the webpage for the con-

sumption in real-time. For more details about such systems please

see [11].

We learned that the availability of a mobile mixer device gener-

ates a new type of delay and synchronization problem i.e. the

delay between what the director can see herself of an activity and

when it appears on the mixer screen. The problem has not existed

in previous “OB-bus” TV production system since the directors

then mix while sitting in a production room and only look at the

camera feeds in the mixer console. Now, light-weight mobility of

this sort of equipment allows users to produce content using the

mixing system while staying on site of the even that is being

filmed and he/she can observe the event directly as well as

through live camera feeds in the mixer console (referred to as “in-

view mixing”) [21]. This is where the new and interesting chal-

lenge emerges, as being witnessed in field studies with mobile

vision mixers [11]. In this case the director can notice delay be-

tween camera feeds showing the event and the event per se, and

thus high delays causes critical problems with production of a

consistent live broadcast. We suggest that the emerging mobile

systems must account for this technical challenge, and suggest a

more detailed investigation. We suggest that the next step, which

is presented here, is to articulate the details of this problem and

make an addition to the design of such systems.

Since complete implementation is relatively time consuming we

therefore suggest to take a middle step which includes a specifica-

tion of the problem, as well a simulation of proposed solution for

new type of synchronization problem in such applications. We

would then get early indications of the possibility to handle this

problem. There are two problems affecting the work of the direc-

tor at the mixer console caused by end-to-end delay of video

streams (time that is taken to transmit the packet through the net-

work from a source to a destination):

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

1. In the mobile video production systems, the director of-

ten can choose between looking at the event per se and

at the camera feeds of it (“in-view mixing”), when mak-

ing broadcast selections. Due to delays of video streams,

the time for the actual selection of a cut, as decided by

looking at video streams in the mixer console, is not

aligned with the event per se. This makes it difficult to

fine-tune the switch from one view of a situation to an-

other, such as when moving from an overview shot to a

detailed shot, during a particularly interesting situation.

2. Due to the architecture of the Internet, delay from each

camera is potentially going to be different and will re-

sult in asynchrony in the live feeds presented to the

mixer. In the case when all the cameras are filming the

same event from different angles, which is likely in col-

laborative production, the inter-camera asynchrony will

affect director’s multi-viewing, causing the same sort of

problems in visual story telling as in the previous case.

If not handled correctly, both of them lead to problems for the

director’s storytelling, and consequently they will influence the

perceived experience of the final broadcast. Thus, low delay and

synchronization in between video feeds and the event are im-

portant requirements for in-view mixing in live mobile collabora-

tive production systems. Our proposed solution called ”frame rate

exclusive sync manager (FESM)” keeps the delay as low as possi-

ble by avoiding buffering for synchronization, addressing the first

problem; and maintains synchronization between video streams by

dynamically adapting the frame rate of the camera feeds according

to the bandwidth health, addressing the second problem.

Existing live collaborative mobile production systems like [3, 8]

do not address synchronization and delay problems in the mixer

console. In professional live TV production there is a delay of

several seconds between the event and when it reaches the view-

ers in their homes. This divergence is almost never experienced as

a problem. However, in the actual production situation, i.e. when

the video systems are collaboratively tied together, the demands

on low delays and synchronization are high. Delays in the profes-

sional live TV production environment are minimized by high

speed dedicated transmission media and specialized hardware to

synchronize multiple cameras. On the other hand, delay between

the mixing moment and the event per se is of no consequence in

professional TV systems, because of the physical separation be-

tween the event and the production environment.

Buffering techniques are commonly used for inter-stream syn-

chronization with smooth presentation [7, 12, 24]. However, ex-

tensive buffering causes increased delays, making this method

inapplicable for in-view mixing. In this paper we focus on the

solution for synchronization of video streams in in-view mixing

scenario where minimal delay is required.

Our proposed solution relies solely on the dynamic frame rate

control at the video generation source for achieving synchroniza-

tion between video streams. It does not rely on skipping frames

and buffering at the receiver side for inter-stream synchronization,

and thus avoiding addition of extra delay. We preferred frame rate

reduction based solution in comparison with (a) spatial resolution

reduction or (b) increasing the compression rate, because ap-

proaches (a) and (b) lower the visual image quality which is unde-

sirable in the “in-view mixing” context. This work is an extension

to the work done in [21] which discusses context based software

solutions to handle the problem of synchronization and delays in

live mobile collaborative video production systems. While [21]

offers more general analysis and discussion about the new inter-

esting problems and how they can be handled, this work focuses

on a more concrete solution specifically for “in-view mixing”. We

propose, and evaluate by simulation an algorithm that maintains

synchronization between continuous media streams with minimal

delay by dynamically adapting the frame rate of the camera feeds

based on the bandwidth health. The simulation results show that

the algorithm successfully synchronizes multiple video streams

keeping the synchronization offset under 140 milliseconds (ms)

which is below the typical requirement according to [12]. Though,

the reduced frame rate results in less smooth video presentation

which can be tolerated in in-view mixing mode [21].

The rest of the paper is organized as follows. Background and

related work are presented in section two. The description of the

proposed solution, as well as of the algorithm is presented next. In

section four, the results of the algorithm simulation are presented.

Finally, we discuss the results and conclude the paper.

2. BACKGROUND AND RELATED WORK
Solutions for media synchronization in different scenarios have

been proposed and they can be divided into three categories :

Intra-stream synchronization, Inter-stream synchronization and

Group synchronization[5].

In our case, the mixing is dependent on inter-stream synchroniza-

tion, i.e. on methods that ensure synchronization among multiple

live streams. Many studies have focused on synchronization of

multiple live video streams. Works in [16, 17, 25, 27] have pro-

posed solutions for inter-stream synchronization based on the

VTR (virtual time rendering) algorithm that involves changing the

buffering time according to the delay estimation. Bartoli et al. [2]

suggest a synchronization scheme that ensures inter-stream and

intra-stream synchronization for videoconferencing services over

IP networks by preventive modification of the length of the silent

periods for intra-stream synchronization. Similarly, authors in [7,

12, 23, 24] proposed different solutions that focus on inter-stream

synchronization of live media streams using techniques like play

out duration extension or reduction, reactive skips and pauses and

frame duplication. As all of these solutions involve at least some

level of buffering and thus introduce extra delay, such synchroni-

zation solutions do not suit our requirements for in-view mixing.

There are studies, e.g. [1, 15, 20, 29] which make use of reactive

source control schemes where the video source or sender adjusts

the rate of transmission in reaction to the detected asynchrony in

order to achieve synchronization. For example Huang et al. [15]

propose a scheme in which the source decreases its transmission

rate when the network is congested and slowly increases its

transmission rate when the network congestion is over. On other

hand, if the source detects that recovery of synchrony is difficult

for the receiver, it can decrease the number of media streams

transmitted [18, 19, 22] Although, all above mentioned works

make use of reactive source control techniques, none of them or

any other (to the authors’ best knowledge) provides a solution that

relies solely on transmission rate control to cope with the varying

bandwidth for achieving inter-stream synchronization. The exist-

ing approaches make use of the combination of the transmission

control technique with frame skipping and duplication at receiver

side, and other buffer control mechanisms which introduce addi-

tional delay. Considering the use of variable bitrate encoding

(VBR) for which amount of output data per time segment varies,

it takes more time to encode since the process is more complex

and is not good for our delay sensitive application.

Summing up, there is a large body of research that addresses the

topic of inter-stream synchronization in variety of situations.

However, none of the related works addresses synchronization

problems in between video streams in the services such as collab-

orative mobile live video production where minimal delay is re-

quired when the director is present at the site of event that is being

filmed (“in view” mixing). We take our inspiration from the above

mentioned works that use reactive source control techniques and

propose a synchronization algorithm that meets the requirements

of “in-view mixing” scenario.

3. PROPOSED SOLUTION
On site delay and asynchrony obstruct and confuse the director.

Smoothness in video feed, however, may be compromised since

the director can also directly see and observe the event. The re-

quirement here is thus low delay, and high synchronization. To

meet up such requirement of in-view mixing scenario, we propose

frame rate exclusive synchronization manager.

Live Mobile Video Streaming When streaming live videos from

mobile phones using 3G/4G connections, the available bandwidth

is not guaranteed. We can experience fluctuations in the available

bandwidth. Thus, if we are broadcasting the same event using two

or more mobile phones, individual streams may experience differ-

ent delays over the network, which, in turn, causes asynchrony

among them. Here we want to note that latency in video coding

which also could affect synchronization is not taken into consid-

eration in this work, but we rather concentrate only on delay

caused by variations in the available bandwidth. Let’s suppose we

are streaming live video from the same event with two mobile

camera sources (S1 and S2, fig. 1) to corresponding receivers (R1

and R2) in a video mixer console. The vertical bars in the streams

in fig. 1 represents frames that are captured at the same instant.

Now suppose the network link from S1 is slower than from S2.

This difference will cause video stream from S1 to be delayed,

thus resulting in asynchrony when video is presented in the mixer

console. The aim of our solution is to allow speeding up the video

frames despite of lower bandwidth, so that both streams can be

presented in the mixer console synchronized.

When we stream video from one point to another, we do it on a

certain frame rate. The standard approach in streaming services is

that a frame rate is negotiated in the beginning of a streaming

session and remains the same during the rest of the session. Let’s

suppose the negotiated frame rate between video source and re-

ceiver is 15 fps. This means, 15 frames will be used to cover the

event lasting one second. This requires the same amount of data to

be transmitted over both the slow and the fast link to cover the

same amount of time. When slower link does not support required

amount of data in one second (bitrate), the frames are delayed.

However, if we reduce frame rate to, e.g. 8 fps, the same amount

of time (one second) will be covered with fewer frames. By re-

quiring less data to be transmitted over the link over the same

amount of time, the frames will appear as streaming faster. An

obvious drawback of this approach is a loss of smoothness in the

video playback. However, in “in-view” mixing, smoothness is not

a priority requirement.

3.1 Frame rate exclusive sync manager
Figure 1 shows mobile cameras S1 and S2 sending live video

streams to receivers R1 and R2 in the mixer console. The vertical

bars in streams represent video frames that are captured at the

same moment. Live video stream transmitted from S1 to R1, de-

noted as “stream i” is delayed as compared to “stream j”, the live

video stream transmitted from S2 to R2. The “Frame rate exclu-

sive Sync Manager”(FESM) is a component in the mixer console

that reads time stamp information available in video streams and

determines which stream is out of synchronization, i.e. delayed,

by calculating the synchronization offset. If the offset is too big,

the FESM signals the corresponding video source to drop the

frame rate. FESM also keeps track of the network bandwidth and

in the case the bandwidth is recovering, it signals the correspond-

ing receiver to recover the frame rate. There are existing tech-

niques available in literature like [6, 26, 30] that can be used for

monitoring the bandwidth. In this work, it is assumed that the

bandwidth monitoring function is already in place.

R1

R2

FESM

Adjust framerate

S1

S2

Mixer Console

Stream i

Stream j

Adjust framerate

Figure 1: Frame rate exclusive sync manager

3.1.1 Clock Synchronization
It is assumed that clocks in the mobile cameras and receivers

are synchronized using the network time protocol (NTP), and that

each video frame in video stream is time stamped. NTP is capable

of synchronizing the clocks with the accuracy of the range of few

milliseconds ‎[12]. To keep all streams synchronized, we compare

time stamps in individual streams to a single reference clock, and

try to keep each stream synchronized with the reference clock.

The reference clock is the clock in the receiving system (the mixer

console in this case), which is synchronized as well with all the

senders. The reference clock generates time stamps Tc with fre-

quency equal to maximum supported frame rate, e.g. 25 frames

per second. Synchronization of a video stream with the reference

clock goes as follows.

Ti Tc

Xsync

Stream i

Reference Clock

Figure 2: Calculation of Xsync in FESM

Let’s say Ti is the timestamp on the frame received in R1 from S1.

When video frames arrive at their corresponding receivers, the

FESM (see Figure 1) reads Ti and calculates the synchronization

offset Xsynci by computing the difference between the current

value of the reference clock Tc and the time stamp on received

frame Ti (see Figure 2). Thus, Xsynci, calculated as

Xsynci = |Tc - Ti |

Where Xsynci is the synchronization offset of stream i. In multi-

media systems synchronization requirements among streams can

range from at least as low as 100ms to approximately 300ms [12].

Algorithm Figure 3 shows the flowchart of the continuous loop

for the proposed algorithm. After the algorithm is started, parame-

ters Thresh and Ref Clock are initialized. Thresh is a synchroniza-

tion threshold for the synchronization offset Xsync, and Ref Clock

is the reference clock. The algorithm proceeds after reading the

time stamp of the received frame Ti and the link bandwidth B/W.

If B/W is recovering, the control will recover the frame rate to

normal and jump back to the point in the algorithm after initializa-

tion, and if B/W is getting worse or not recovering, then synchro-

nization offset Xsync is calculated (time stamp Tc is obtained from

the Ref Clock). Next the Xsync is compared to the synchronization

threshold Thresh. If Xsync is larger than Thresh, the frame rate is

dropped by a given step value at the sender, and iteration starts

over, otherwise the iteration is immediately started over.

Read Ti

Read B/W

Xsynci= |Tc-Ti|
If Xsync>=

Thresh

Start

Drop frame rate

Yes

Iinitialize

Thresh, Ref

Clock

If B/W is

recovering

Recover FPS so

the appropriate

stream

No

Yes

No

Figure 3: Flowchart of the proposed algorithm

In the case of multiple streams, every stream is independently

handled and its frame rate is adjusted dynamically to keep it syn-

chronized with the reference clock. When all the streams synchro-

nize to one reference clock, they are automatically synchronized.

Evaluation by simulation We simulated its performance to get

early feedback on how well it maintain synchronization between

video streams in a case where the bandwidth changes over time,

when other parameters like encoding delay are constant. The syn-

chronization offset and the frame rate of video streams were

measured and plotted.

We simulated two video sources, two receivers, the network link

and the frame rate exclusive synchronization manager (FESM).

We generated time stamped video frames from two video sources

at the same time and transmitted them as two separate video

streams to separate receivers. We performed the experiment with

two video streams, during which we were changing available

bandwidth of the emulated network links, and observed how it

influenced synchronization offset and stream frame rate.

We implemented video senders and receivers in Max/MSP/Jitter

[13]. Video is encoded using SPIHT (Set Partitioning in Hierar-

chical Trees), and the streams are sent to the receivers via TCP.

We used a short video with 176x144 spatial resolution which was

recoded at 25 frames per second. The network link between send-

ers and receivers were emulated using ipfw [14]. The ipfw is a

utility in the Mac OSX that works as a user interface for control-

ling a dummynet traffic shaper which allows us to throttle availa-

ble bandwidth for the specific port number and IP address [28].

The FESM was also implemented using Max/MSP/Jitter. When

the frame rate is dropped by one step, it does not affect the Xsync

value immediately because of network delay. Thus, in our simula-

tion, the algorithm iterates every three frame using a mean value

of last three Xsync values. In the simulation, we used 140 ms as

the synchronization threshold (Thresh), and two was used as the

step value for the frame rate drop.

3.2 Results
Figure 4 show results of the experiments. Part (a) shows available

bandwidth of the emulated network links was changing with re-

spect to time. Part (b) presents synchronization offset (Xsync)

changes in time, and parts (c) show frame rate(s) over time.

Experiment: Two video senders stream video via two separate

emulated network links whose bandwidth can be controlled. We

refer to individual streams as “stream 1” and “stream 2” and their

respective network links are referred to as “link 1” and “link 2” in

this text from now on. We ran the simulation for 150 seconds. The

available bandwidth for both streams is initially set to 2500 kbits/s

as shown in the Figure 4a. Both streams are initially running at

the frame rate of 25 frames per second (see Figure 4c). After al-

most 30 seconds, the available bandwidth on link 1 falls to 2200

kbits/s (see point 1 Figure 4a). Consequently the stream 1 is de-

layed and Xsync value rises to 224ms (see point a in Figure 4b).

As we are interested to see how two streams synchronize, the

Xsync shown in Figure 4b is actually synchronization offset be-

tween stream 1 and 2. We know that

0

500

1000

1500

2000

2500

3000

0 50 100 150 200
B

an
d

w
id

th
 (

K
b

p
s)

Time (s)

Bandwidth
bw1

bw2

1

2

3

4
5

6

-200

0

200

400

600

800

1000

0 50 100 150 200

X
sy

n
c

Time (s)

Xsync Xsync

a

b

c
d

Figure 4a-c: Results of the second experiment

Xsynci = |Ti-Tc|,

where Xsynci is the synchronization offset of stream 1 with re-

spect to the reference clock. Also,

Xsyncj =|Tj-Tc|,

where Xsyncj is the synchronization offset of stream 2 with re-

spect to the reference clock. Hence, the synchronization offset

between streams is:

Xsync = Xsynci - Xsyncj

Xsync = |Ti-Tj|.

As soon as Xsync exceeds the Thresh value, the frame rate on

stream 1 is dropped gradually (to 18 fps) until Xsync falls back

within the threshold limit (140ms). The small fluctuations in the

frame rate are caused by the variations in processing load of the

simulation equipment. Later on during the simulation, the band-

width available for stream 2 also falls to 1500kbits/s (see point 2

in Figure 4a). The Xsync again rises as high as 937ms as indicated

at point b in Figure 4b. The algorithm handles this situation again

by dropping the frame rate of stream 2 in the similar manner as we

described for stream 1. Now both streams are running at the lower

frame rates until the point 3 (Figure 4a) when the bandwidth of

link 1 further drops to 1600 Kbits/s causing a gradual rise in

Xsync to 248 ms (point c Figure 4b). The algorithm handles syn-

chronization again by lowering the frame rate of stream 1 further

to 13 fps and thus Xsync falls back within the threshold limit

again within 1.5 seconds. After few seconds bandwidth of stream

2 (which was 1500 Kbits/sec until then) recovers to 2300 Kbits/s

(see point 4 Figure 4a) and correspondingly the frame rate on

stream 2 is also rises gradually to 22 fps which causes Xsync to

exceed the threshold (see point d Figure 4b). Consequently the

algorithm settles frame rate to 19 fps where Xsync is under

threshold value. Later, at the point 5, the bandwidth of the link 1

recovers to 2500 Kbits/sec which causes the recovery of the frame

rate in stream 1 to 25 fps. Frame rate of stream 2 is also recovered

to 25 fps when its bandwidth rises to 2500 Kbits/s later in the

simulation (point 6 Figure 4a).

4. DISCUSSION
Here we discuss how well FESM handles synchronization in gen-

eral as well as in specific balancing of parameters such as syn-

chronization recovery time, step value, algorithm iteration size

and their effect on algorithm.We also discuss implications of syn-

chronization recovery time and resultant frame rate on quality of

experience for a director using the mixer console.

Capability of FESM: The simulation of FESM as presented in

the previous section showed that our algorithm is capable of

achieving increased synchronization of multiple video streams

with low delay despite varying bandwidth.

Synchronization recovery time: It is important to understand the

length of the synchronization recovery time to evaluate the quality

of the algorithm, and how does it influence the work of a director

mixing in between video streams in an in-view mixing scenario.

The synchronization recovery time is the time between the point

when synchronization offset becomes larger than the threshold

value and the point when it is again below the threshold. In our

experiments, the average recovery time was 3.5 seconds, with

synchronization offset ranging between 163ms and 937ms.

Step value: Synchronization recovery time in our experiments

depends on the step value used for frame rate drop, and on how

severe is the change in the bandwidth. If the higher step value was

used to adjust the frame rate, synchronization was recovered in

shorter time than if a lower step value was used. However, the use

of the higher step value might result in a resultant frame rate low-

er than that with the lower step. On the other hand, too small step

value results in long recovery time (e.g. having 1 as the value for

frame rate drop resulted in 24 seconds in similar situation as point

b in 4Error! Reference source not found.b). After trying with

different step values for frame rate drop, we found that step value

two as a good enough tradeoff.

Bandwidth fluctuations: Considering the bandwidth changes, if

the fluctuations in between different video links are bigger, and

thus resulting in the high synchronization offset, the more steps it

will take to recover synchronization.

Algorithm iteration size: The fact that algorithm iterates every

three frames also contributes to higher recovery time. We chose

this iteration update to allow enough time for the system to reflect

the synchronizing effect of the frame rate adjustment.

Experience of quality: It is interesting to discuss synchronization

recovery time from the perspective of a director doing mixing.

From the results presented in the earlier section we can say that

FESM ensures increased synchronization without introducing

additional delays in the streams at mixer console is a step further

in improving the quality of experience for director in such systems

being used in “in-view mixing” settings. However, it is visible

that potentially high synchronization recovery time reveals chal-

lenges that we may have to deal with in real life implementation.

When considering the in view mixing situation in a collaborative

live mobile video production, where the director is producing a

live broadcast, the bandwidth drop of one of the live streams and

long recovery time may cause a problem for a director. The direc-

tor may notice asynchrony in his mixer console. During that peri-

od there may be several important events happening, and the lack

of synchrony may lead to wrong mixing decisions. This becomes

even more sensitive in a case when viewers’ feedback is taken

into consideration – in that case it is not only delays in between

video streams in the mixer console and the event per se that mat-

ter, but also delay occurring in between the event, live broadcast

of it, and the feedback. Also, it would be interesting to see how

low the frame rate could be lowered not to influence the director’s

work, i.e. what is the minimum image quality that these systems

should enable. For this, a field study using a prototype with real

users should be conducted.

Although, our simulation experiments prove the concept that in-

creased synchronization can be achieved using FESM, we need to

understand how big synchronization recovery time can be tolerat-

ed in practice in order not to influence the director’s decisions.

5. CONCLUSION AND FUTURE WORK
We proposed a synchronization algorithm for an in-view mixing

scenario in live mobile collaborative video production applica-

tions i.e. a situation where the director can observe the event of

filming in situ as well as through the live camera feeds in the mix-

er console. The proposed solution increases synchronization by

dynamically adapting the frame rate at the video sources with

bandwidth fluctuations. This method avoids buffering, and thus

provides synchronization with minimal delay. The down side is

that the video playback loses smoothness in mixer console when

the frame rate is dropped to handle synchronization. As we focus

on a specific scenario in mobile collaborative live video mixing

systems where the director is present at the filming location, this

drawback does not affect the director’s work. We evaluated the

proposed algorithm by doing simulation tests and presented our

results. The results showed that the algorithm handles synchroni-

zation with average recovery time of 3.5 seconds. Although this

simulation study proves the concept and unpacks the influence of

different parameters involved on synchronization, the implemen-

tation is needed to demonstrate the performance of the proposed

solution in the real network with un-deterministic behavior, as

well as to understand how long synchronization recovery time

could be tolerated in order not to influence director’s decisions in

in-view mixing scenario. Therefore, the next step is a development

of a prototype and a user study.

6. REFERENCES

[1] Ali, Z. Ghafoor, et al. Media synchronization in multimedia

web using a neuro-fuzzy framework, IEEEJ. Sel. Areas

Commun. 18(2)(2000)168–183.

[2] Bartoli, I. et al. A synchronization control scheme for vide-

oconferencing services, J. Multimedia 1 (4) (2007) 1–9.

[3] Bentley, F., Groble, M. 2009. TuVista: meeting the multime-

dia needs of mobile sports fans. In Proc. Of MM '09.

[4] Blum, C. Practical Method for the Synchronization of Live

Continuous Media Streams, Institut Eurécom.

[5] Boronat, F. et al., (2009) Multimedia group and inter-stream

synchronization techniques: A comparative study, Infor-

mation Systems 34 pages 108–131

[6] Breitbart Y. et al, Efficiently monitoring bandwidth and la-

tency in IP networks, in: Twentieth Annual Joint Conference

of the IEEE Computer and Communications Societies (IN-

FOCOM 2001), Page(s): 933- 942 vol.2

[7] Correia, M. Pinto, P. Low-level multimedia synchronization

algorithms on broadband networks, in: Proceedings of the

Third ACM international conference on Multimedia, San

Francisco, CA, USA, November1995, pp. 423–434.

[8] Engström, A. Juhlin, O. et al (2009) Instant broadcasting

system: mobile collaborative live video mixing. In proc.

SIGGRAPH ASIA '09 ACM Emerging Technologies

[9] Engström, A. Juhlin, O. and Reponem, E. (2010) Mobile

broadcasting – The whats and hows of live video as a social

medium, In Proc of Mobile HCI 2010, September 7–10, Lis-

bon, Portugal

[10] Engström, A. Perry, M. Juhlin, O. (2012) Amateur Vision

and Recreational Orientation: creating live video together. In

proc. CSCW 2012 Seattle.

[11] Engström, A. Zoric, G. Juhlin, O. et al The Mobile Vision

Mixer: A mobile network based live video broadcasting sys-

tem in your mobile phone, In proc. MUM 2012, Ulm

[12] Escobar, J. Partridge, C. Deutsch, D. Flow synchronization

protocol, IEEE/ACM Trans. Networking 2 (2) (1994) 111–

121.

[13] http://cycling74.com/products/max/ Accessed (13 Sept 2012)

[14] http://developer.apple.com/library/mac/#documentation/Dar

win/Reference/Manpages/man8/ipfw.8.html Accessed (13

Sept 2012)

[15] Huang, C. M. Kung, H.Y. Yang, J. L. Synchronization and

flow adaptation schemes for reliable multiple-stream trans-

mission in multimedia presentations, J. Syst. Software56 (2)

(2001) 133–151.

[16] Ishibashi, Y. Kanbara T. et. al., Media synchronization be-

tween voice and movement of avatars in networked virtual

environments, in:Proceedings of the 2004 ACMSIGCHI In-

ternational Conference on Advances in Computer Entertain-

ment Technology, Singapore, June2004, pp.134–139

[17] Ishibashi, Y. et al. Inter-stream synchronization between

haptic media and voice in collaborative virtual environments,

in: Proceedings of the 12th annual ACM international con-

ference on Multimedia, New York, USA, October2004, pp.

604–611.

[18] Ishibashi, Y. et al. Media synchronization and causality con-

trol for distributed multimedia applications, IEICE Trans.

Commun. E84-B (3) (2001) 667–677.

[19] Little, T.D.C. A framework for synchronous delivery of time-

dependent multimedia data, Multimedia Syst. 1 (2) (1993)

87–94.

[20] Manvi, S.et al. An agent based synchronization scheme for

multimedia applications, J. Syst. Software (JSS) 79 (5)

(2006) 701–713.

[21] Mughal, M. A. Juhlin, O. “Context dependent software solu-

tions to handle video synchronization and delay in collabora-

tive live mobile video production”, In Journal of Personal

Ubiquitous Computing (2013).

[22] Ravindran, K. Bansal, V. Delay compensation protocols for

synchronization of multimedia data streams, IEEE Trans.

Knowl. Data Eng. 5 (4) (1993) 574–589.

[23] Rothermel, K. Helbig, T. An adaptive protocol for synchro-

nizing media streams, ACM/Springer Multimedia Syst. 5 (5)

(1997) 324–336.

[24] Rothermel, K. Helbig, T. An adaptive stream synchronization

protocol, in: Proceedings of the Fifth International Workshop

on Network and Operating System Support for Digital Audio

and Video, Durham, New Hampshire, USA, April 1995, pp.

189–202.

[25] S.Tasaka, Y.Ishibashi, Media synchronizationin heterogene-

ous networks: stored media case, IEICE Trans. Commun.

E81-B(8) (1998)1624–1636.

[26] Selin P. Selin et al, Available Bandwidth Measurement

Technique Using Impulsive Packet Probing for Monitoring

End-to-End Service Quality on the Internet, in: 17th Asia-

Pacific Conference on Communications 2011, pp. 518-523.

[27] Tasaka, S. Ishibashi, Y. A Performance Comparison of Sin-

gle-Stream and Multistream Approaches to Live Media Syn-

chronization E81-B (11)(1998)1988–1997.

[28] The dummynet project,

http://info.iet.unipi.it/~luigi/dummynet/ Accessed on 19 Sept

2012.

[29] Zhang, A. Song, Y. Mielke, M. Mielke, NetMedia: streaming

multimedia presentations in distributed environments, IEEE

Multimedia 9 (1) (2002) 56–73.

[30] Zhu, H. et al, Predictable Runtime Monitoring, in proceed-

ings of ECRTS '09. 21st Euromicro Conference on Real-

Time Systems, 1-3 July 2009, pp. 173-183

[31] Zimmerman, J., Forlizzi, J., and Evenson, S.. Research

through design as a method for interaction design research in

HCI. In Proceedings of the ACM SIGCHI Conference on

Human Factors in Computing Systems (CHI’2007)

	1. INTRODUCTION
	2. BACKGROUND AND RELATED WORK
	3. PROPOSED SOLUTION
	3.1 Frame rate exclusive sync manager
	3.1.1 Clock Synchronization

	3.2 Results

	4. DISCUSSION
	5. CONCLUSION AND FUTURE WORK
	6. REFERENCES

